Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Methods Mol Biol ; 2788: 197-207, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38656515

RESUMEN

The best Vaccinium corymbosum plant growth under in vitro conditions can be achieved by using the right composition and pH of the medium. For the initial phase of in vitro culture, a combination of cytokinins-mostly zeatin-can usually be used. Organic supplementation of the medium enables the use of a replacement for the expensive natural cytokinin used in micropropagation of highbush blueberry. This chapter describes the experiments with silicon Hydroplus™ Actisil (Si), coconut water (CW), and different pH (5.0; 5.5, and 6.0) as a stress factor. The addition of 200 mg dm-3 silicon solution and 15% coconut water strongly stimulated highbush blueberry plant growth in vitro. Moreover, silicon solution benefits the negative effects of higher pH of the medium used for micropropagation of V. corymbosum. Maximum vegetative development of blueberry explants was obtained at pH 5.


Asunto(s)
Arándanos Azules (Planta) , Medios de Cultivo , Medios de Cultivo/química , Concentración de Iones de Hidrógeno , Arándanos Azules (Planta)/crecimiento & desarrollo , Vaccinium/crecimiento & desarrollo , Aclimatación , Silicio/farmacología
2.
PLoS One ; 16(10): e0259119, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34710165

RESUMEN

Flowering and fruit set are important traits affecting fruit quality and yield in rabbiteye blueberry (Vaccinium ashei). Intense efforts have been made to elucidate the influence of vernalization and phytohormones on flowering, but the molecular mechanisms of flowering and fruit set remain unclear. To unravel these mechanisms, we performed transcriptome analysis to explore blueberry transcripts from flowering to early fruit stage. We divided flowering and fruit set into flower bud (S2), initial flower (S3), bloom flower (S4), pad fruit (S5), and cup fruit (S6) based on phenotype and identified 1,344, 69, 658, and 189 unique differentially expressed genes (DEGs) in comparisons of S3/S2, S4/S3, S5/S4, and S6/S5, respectively. There were obviously more DEGs in S3/S2 and S5/S4 than in S4/S3, and S6/S5, suggesting that S3/S2 and S5/S4 represent major transitions from buds to fruit in blueberry. GO and KEGG enrichment analysis indicated these DEGs were mostly enriched in phytohormone biosynthesis and signaling, transporter proteins, photosynthesis, anthocyanins biosynthesis, disease resistance protein and transcription factor categories, in addition, transcript levels of phytohormones and transporters changed greatly throughout the flowering and fruit set process. Gibberellic acid and jasmonic acid mainly acted on the early stage of flowering development like expression of the florigen gene FT, while the expression of auxin response factor genes increased almost throughout the process from bud to fruit development. Transporter proteins were mainly associated with minerals during the early flowering development stage and sugars during the early fruit stage. At the early fruit stage, anthocyanins started to accumulate, and the fruit was susceptible to diseases such as fungal infection. Expression of the transcription factor MYB86 was up-regulated during initial fruit development, which may promote anthocyanin accumulation. These results will aid future studies exploring the molecular mechanism underlying flowering and fruit set of rabbiteye blueberry.


Asunto(s)
Arándanos Azules (Planta)/genética , Flores/genética , Frutas/genética , Regulación de la Expresión Génica de las Plantas , Transcriptoma , Antocianinas , Arándanos Azules (Planta)/crecimiento & desarrollo , Perfilación de la Expresión Génica , Transducción de Señal/genética
3.
PLoS One ; 16(8): e0255139, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34339434

RESUMEN

Fruit firmness and in particular the individual components of texture and moisture loss, are considered the key quality traits when describing blueberry fruit quality, and whilst these traits are genetically regulated, the mechanisms governing their control are not clearly understood. In this investigation, RNAseq was performed on fruits of two blueberry cultivars with very different storage properties, 'Bluecrop' and 'Legacy', at harvest, three weeks storage in a non-modified environment at 4 °C and after three weeks storage at 4 °C followed by three days at 21 °C, with the aim of understanding the transcriptional changes that occur during storage in cultivars with very different post-harvest fruit quality. De novo assemblies of the transcriptomes of the two cultivars were performed separately and a total of 39,335 and 41,896 unigenes for 'Bluecrop' and 'Legacy' respectively were resolved. Differential gene expression analyses were grouped into four cluster profiles based on changes in transcript abundance between harvest and 24 days post-harvest. A total of 290 unigenes were up-regulated in 'Legacy' only, 685 were up-regulated in 'Bluecrop', 252 were up-regulated in both cultivars and 948 were down-regulated in both cultivars between harvest and 24 days post-harvest. Unigenes showing significant differential expression between harvest and following post-harvest cold-storage were grouped into classes of biological processes including stress responses, cell wall metabolism, wax metabolism, calcium metabolism, cellular components, and biological processes. In total 21 differentially expressed unigenes with a putative role in regulating the response to post-harvest cold-storage in the two cultivars were identified from the de novo transcriptome assemblies performed. The results presented provide a stable foundation from which to perform further analyses with which to functionally validate the candidate genes identified, and to begin to understand the genetic mechanisms controlling changes in firmness in blueberry fruits post-harvest.


Asunto(s)
Arándanos Azules (Planta)/crecimiento & desarrollo , Arándanos Azules (Planta)/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Transcriptoma/genética , Análisis por Conglomerados , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Anotación de Secuencia Molecular , Análisis de Componente Principal , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados , Tetraploidía
4.
PLoS One ; 16(8): e0256942, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34464415

RESUMEN

Under inadequate chilling conditions, hydrogen cyanamide (HC) is often used to promote budbreak and improve earliness of Southern highbush blueberry (Vaccinium corymbosum L. interspecific hybrids). However, HC is strictly regulated or even banned in some countries because of its high hazardous properties. Development of safer and effective alternatives to HC is critical to sustainable subtropical blueberry production. In this study, we examined the efficacy of HC and defoliants as bud dormancy-breaking agents for 'Emerald' blueberry. First, we compared water control, 1.0% HC (9.35 L ha-1), and three defoliants [potassium thiosulfate (KTS), urea, and zinc sulfate (ZS)] applied at 6.0% (28 kg ha-1). Model fitting analysis revealed that only HC and ZS advanced both defoliation and budbreak compared with the water control. HC-induced budbreak showed an exponential plateau function with a rapid phase occurring from 0 to 22 days after treatment (DAT), whereas ZS-induced budbreak showed a sigmoidal function with a rapid phase occurring from 15 to 44 DAT. The final budbreak percentage was similar in all treatments (71.7%-83.7%). Compared with the water control, HC and ZS increased yield by up to 171% and 41%, respectively, but the yield increase was statistically significant only for HC. Phytohormone profiling was performed for water-, HC- and ZS-treated flower buds. Both chemicals did not increase gibberellin 4 and indole-3-acetic acid production, but they caused a steady increase in jasmonic acid (JA) during budbreak. Compared with ZS, HC increased JA production to a greater extent and was the only chemical that reduced abscisic acid (ABA) concentrations during budbreak. A follow-up experiment tested ZS at six different rates (0-187 kg ha-1) but detected no significant dose-response on budbreak. These results collectively suggest that defoliants are not effective alternatives to HC, and that HC and ZS have different modes of action in budbreak induction. The high efficacy of HC as a dormancy-breaking agent could be due to its ability to reduce ABA concentrations in buds. Our results also suggest that JA accumulation is involved in budbreak induction in blueberry.


Asunto(s)
Arándanos Azules (Planta)/crecimiento & desarrollo , Cianamida/farmacología , Defoliantes Químicos/farmacología , Flores/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/fisiología , Arándanos Azules (Planta)/efectos de los fármacos , Arándanos Azules (Planta)/fisiología , Flores/fisiología , Frutas/crecimiento & desarrollo , Latencia en las Plantas/efectos de los fármacos , Latencia en las Plantas/fisiología
5.
PLoS One ; 16(7): e0254013, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34228763

RESUMEN

Understanding the impact of irrigation and fertilizer on rabbiteye blueberry (Vaccinium virgatum) physiology is necessary for its precision planting. Here, we applied varied irrigation and fertilizer under completely randomized experimental design to see its impact on the physiological characteristics and bush growth of rabbiteye blueberries. A comprehensive evaluation of the membership function was used to establish the best water-fertilizer coupling regimes. Rabbiteye blueberry enhanced the net photosynthetic rate, stomatal conductance and transpiration rate of leaf and improved its photosynthetic capacity at maximum level of irrigation water and fertilizer application (F3W4). The high fertilizer-medium water treatment (F3W3) increased leaf-soluble protein contents. The medium fertilizer-medium water treatment (F2W3, F2W2) increased leaf- soluble sugar, superoxide dismutase, and chlorophyll contents; decreased the malondialdehyde content; and enhanced leaf resistance and metabolism. It also promoted the growth of flower buds and new shoots. Combined membership function and cluster analyses revealed that the optimal water and fertilizer conditions for promoting rabbiteye blueberry plant growth were the medium fertilizer-medium water [(NH4)2SO4:Ca(H2PO4)2:K2SO4 at 59:10:20 g plant-1; 2.5 L water plant-1], medium fertilizer-medium-high water [(NH4)2SO4:Ca(H2PO4)2:K2SO4 at 59:10:20 g plant-1; 3.75 L water plant-1], and high fertilizer-medium-high water [(NH4)2SO4:Ca(H2PO4)2:K2SO4 at 118:20:40 g plant-1; 3.75 L water plant-1] treatments. The findings of this study could be used in improving the precision and efficacy of rabbiteye blueberry planting in Guizhou, China. Such an approach can increase the productivity and profitability for local fruit farmers.


Asunto(s)
Arándanos Azules (Planta)/crecimiento & desarrollo , Arándanos Azules (Planta)/fisiología , Fertilizantes , Agua , Análisis por Conglomerados , Fotosíntesis , Hojas de la Planta/fisiología
6.
BMC Plant Biol ; 21(1): 289, 2021 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-34167466

RESUMEN

BACKGROUND: Blueberry (Vaccinium spp.) is characterized by the production of berries that are smaller than most common fruits, and the underlying mechanisms of fruit size in blueberry remain elusive. V. corymbosum 'O'Neal' and 'Bluerain' are commercial southern highbush blueberry cultivars with large- and small-size fruits, respectively, which mature 'O'Neal' fruits are 1 ~ 2-fold heavier than those of 'Bluerain'. In this study, the ontogenetical patterns of 'O'Neal' and 'Bluerain' hypanthia and fruits were compared, and comparative transcriptomic analysis was performed during early fruit development. RESULTS: V. corymbosum 'O'Neal' and 'Bluerain' hypanthia and fruits exhibited intricate temporal and spatial cell proliferation and expansion patterns. Cell division before anthesis and cell expansion after fertilization were the major restricting factors, and outer mesocarp was the key tissue affecting fruit size variation among blueberry genotypes. Comparative transcriptomic and annotation analysis of differentially expressed genes revealed that the plant hormone signal transduction pathway was enriched, and that jasmonate-related TIFYs genes might be the key components orchestrating other phytohormones and influencing fruit size during early blueberry fruit development. CONCLUSIONS: These results provided detailed ontogenetic evidence for determining blueberry fruit size, and revealed the important roles of phytohormone signal transductions involving in early fruit development. The TIFY genes could be useful as markers for large-size fruit selection in the current breeding programs of blueberry.


Asunto(s)
Arándanos Azules (Planta)/crecimiento & desarrollo , Flores/crecimiento & desarrollo , Frutas/crecimiento & desarrollo , Perfilación de la Expresión Génica , Arándanos Azules (Planta)/anatomía & histología , Arándanos Azules (Planta)/metabolismo , Proliferación Celular , Flores/anatomía & histología , Flores/metabolismo , Frutas/anatomía & histología , Frutas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/fisiología , ARN de Planta/metabolismo , Transducción de Señal/genética
7.
J Food Sci ; 86(7): 2949-2961, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34146400

RESUMEN

Blueberry is a crop grown worldwide due to the excellent quality and high polyphenol content of its fruit and tolerance to cold conditions. We investigated the influence of three production systems, namely an open field, heated greenhouse, and non-heated (plastic) greenhouse, on the phenolic characteristics (total phenolic, flavonoid, and anthocyanin content) and antioxidant capacities of "Spartan" (northern highbush), "Sharpblue" (southern highbush), and "O'Neal" (southern highbush) blueberry cultivars. The non-heated production system showed the highest phenolic characteristics and antioxidant capacity in "Spartan" and "O'Neal," while the open field production system showed the highest phenolic characteristics and antioxidant capacity in "Sharpblue." Derivatives of delphinidin and malvidin were two of the most abundant anthocyanins. The heated greenhouse production system resulted in larger amounts of delphinidin derivatives compared with the other production systems, while the blueberry grown in the non-heated greenhouse produced larger amount of malvidin derivatives. The anthocyanin profiles varied according to production system and blueberry cultivars. The principal component analysis loading plot of blueberries for individual anthocyanins explained over 95% of the total variance. In summary, the results of this study suggest that a strategic approach to blueberry production could elevate the phenolic content and antioxidant capacity of cultivated blueberry. PRACTICAL APPLICATION: The highbush blueberry, a rich source of bioactive polyphenols, is a popular fruit. The microclimate of the production system of highbush blueberries affects the concentrations of antioxidative phenolic compounds such as anthocyanins. Therefore, discovering and applying the appropriate method of production for each blueberry cultivar could facilitate production of high-quality blueberries rich in phenolic antioxidants.


Asunto(s)
Antioxidantes/química , Arándanos Azules (Planta)/crecimiento & desarrollo , Producción de Cultivos/métodos , Frutas/química , Fenoles/química , Antocianinas/química , Arándanos Azules (Planta)/química , Flavonoides/química , Frutas/crecimiento & desarrollo , Extractos Vegetales/química , Polifenoles/química
8.
BMC Plant Biol ; 21(1): 5, 2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33407129

RESUMEN

BACKGROUND: Caffeic acid O-methyltransferases (COMTs) play an important role in the diversification of natural products, especially in the phenylalanine metabolic pathway of plant. The content of COMT genes in blueberry and relationship between their expression patterns and the lignin content during fruit development have not clearly investigated by now. RESULTS: Ninety-two VcCOMTs were identified in Vaccinium corymbosum. According to phylogenetic analyses, the 92 VcCOMTs were divided into 2 groups. The gene structure and conserved motifs within groups were similar which supported the reliability of the phylogenetic structure groupings. Dispersed duplication (DSD) and whole-genome duplication (WGD) were determined to be the major forces in VcCOMTs evolution. The results showed that the results of qRT-PCR and lignin content for 22 VcCOMTs, VcCOMT40 and VcCOMT92 were related to lignin content at different stages of fruit development of blueberry. CONCLUSION: We identified COMT gene family in blueberry, and performed comparative analyses of the phylogenetic relationships in the 15 species of land plant, and gene duplication patterns of COMT genes in 5 of the 15 species. We found 2 VcCOMTs were highly expressed and their relative contents were similar to the variation trend of lignin content during the development of blueberry fruit. These results provide a clue for further study on the roles of VcCOMTs in the development of blueberry fruit and could promisingly be foundations for breeding blueberry clutivals with higher fruit firmness and longer shelf life.


Asunto(s)
Arándanos Azules (Planta)/crecimiento & desarrollo , Arándanos Azules (Planta)/genética , Frutas/crecimiento & desarrollo , Frutas/genética , Metiltransferasas/genética , Metiltransferasas/metabolismo , Familia de Multigenes , Arabidopsis/genética , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Estudio de Asociación del Genoma Completo , Filogenia , Populus/genética , Análisis de Secuencia
9.
J Sci Food Agric ; 101(8): 3376-3385, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33226130

RESUMEN

BACKGROUND: In maritime growing environments, blueberry yield often exhibits excessive season-to-season variation, associated with poorly adapted photosynthetic responses to low light conditions. It is therefore necessary to develop methods that stabilise yield while maintaining or improving fruit quality. Here, we placed reflective mulch alongside plants at the early green fruit stage, to test the hypothesis that increasing the available seasonal light integral could enhance blueberry yield. We further determined several quality characteristics to ensure fruit marketability. RESULTS: Placement of mulch alongside plants reflected up to five times more light compared with bare ground, enhancing the amount of light reaching the canopy. This led to an adaptive increase of light saturated maximal photosynthetic rate of mulch-treated plants, resulting in a twofold increase in yield compared with control plants. Analysis of fruit quality characteristics showed that total soluble solids, sugars and organic acids were similar between treatments. Likewise, antioxidant capacity, total anthocyanin content and the content of individual anthocyanins did not change in response to reflective mulch treatment. CONCLUSIONS: The use of reflective mulch should be explored by industry as a cost-effective method for enhancing blueberry yield while maintaining fruit quality in maritime environments. © 2020 Society of Chemical Industry.


Asunto(s)
Frutas/química , Antocianinas/análisis , Antioxidantes/análisis , Arándanos Azules (Planta)/química , Arándanos Azules (Planta)/crecimiento & desarrollo , Clima , Frutas/crecimiento & desarrollo , Fotosíntesis , Estaciones del Año , Azúcares/análisis
10.
J Sci Food Agric ; 101(8): 3165-3175, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33211339

RESUMEN

BACKGROUND: This paper proposes a novel method to improve accuracy and efficiency in detecting the quality of blueberry fruit, taking advantage of deep learning in classification tasks. We first collected 'Tifblue' blueberries at seven different stages of maturity (10-70 days after full bloom) and measured the pigments of the blueberry skin and the total sugar and the total acid of the pulp. We then established a skin pigment contents prediction network (SPCPN), based on the correlation between the pigments and blueberry pictures, and also a fruit intrinsic qualities prediction network (FIQPN), based on the correlation between the pigments and fruit qualities. Finally, the SPCPN and FIQPN were consolidated into the blueberry quality parameters prediction network (BQPPN). RESULTS: The results showed that the anthocyanins in the blueberry skin were significantly correlated with the total sugar, total acid, and sugar / acid ratio of the fruit. After verification, the results also indicated that, for the prediction of anthocyanins, chlorophyll, and the anthocyanin / chlorophyll ratio, the SPCPN network model was found to achieve higher R2 (RMSE) values of 0.969 (0.139), 0.955 (0.005), 0.967 (15.4), respectively. The FIQPN network model was also able to evaluate the value of total sugar (R2 = 0.940, RMSE = 4.905), total acid (R2 = 0.930, RMSE = 2.034), and the sugar / acid ratio (R2 = 0.973, RMSE = 0.580). CONCLUSION: The above results indicated the potential for utilizing deep learning technology to predict the quality indicators of blueberry before harvesting. © 2020 Society of Chemical Industry.


Asunto(s)
Arándanos Azules (Planta)/crecimiento & desarrollo , Aprendizaje Profundo , Análisis de los Alimentos/métodos , Frutas/química , Pigmentos Biológicos/química , Antocianinas/química , Antocianinas/metabolismo , Arándanos Azules (Planta)/química , Arándanos Azules (Planta)/metabolismo , Clorofila/química , Clorofila/metabolismo , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Pigmentos Biológicos/metabolismo
11.
Int J Mol Sci ; 22(1)2020 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-33375261

RESUMEN

Blueberries (Vaccinium section Cyanococcus) are perennial shrubs widely cultivated for their edible fruits. In this study, we performed admixture and genetic relatedness analysis of northern highbush (NHB, primarily V. corymbosum) and southern highbush (SHB, V. corymbosum introgressed with V. darrowii, V. virgatum, or V. tenellum) blueberry genotypes, and progenies of the BNJ16-5 cross (V. corymbosum × V. darrowii). Using genotyping-by-sequencing (GBS), we generated more than 334 million reads (75 bp). The GBS reads were aligned to the V. corymbosum cv. Draper v1.0 reference genome sequence, and ~2.8 million reads were successfully mapped. From the alignments, we identified 2,244,039 single-nucleotide polymorphisms, which were used for principal component, haplotype, and admixture analysis. Principal component analysis revealed three main groups: (1) NHB cultivars, (2) SHB cultivars, and (3) BNJ16-5 progenies. The overall fixation index (FST) and nucleotide diversity for NHB and SHB cultivars indicated wide genetic differentiation, and haplotype analysis revealed that SHB cultivars are more genetically diverse than NHB cultivars. The admixture analysis identified a mixture of various lineages of parental genomic introgression. This study demonstrated the effectiveness of GBS-derived single-nucleotide polymorphism markers in genetic and admixture analyses to reveal genetic relatedness and to examine parental lineages in blueberry, which may be useful for future breeding plans.


Asunto(s)
Arándanos Azules (Planta)/genética , Linaje de la Célula , Marcadores Genéticos , Haplotipos , Fitomejoramiento , Proteínas de Plantas/genética , Polimorfismo de Nucleótido Simple , Arándanos Azules (Planta)/clasificación , Arándanos Azules (Planta)/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Genotipo , Especificidad de la Especie , Transcriptoma
12.
PLoS One ; 15(12): e0243420, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33284832

RESUMEN

The Ecuadorian páramo, a high altitude tundra-like ecosystem, is a unique source of various ecosystem services and distinct biodiversity. Anthropogenic activities are associated with its fragmentation, which alters ecological factors and directly threatens resident species. Vaccinium floribundum Kunth., commonly known as Andean blueberry or mortiño, is a wild shrub endemic to the Andean region and highly valued in Ecuador for its berries, which are widely used in food preparations and hold an important cultural value. Since it is a wild species, mortiño could be vulnerable to environmental changes, resulting in a reduction of the size and distribution of its populations. To evaluate the extent of these effects on the mortiño populations, we assessed the genetic diversity and population structure of the species along the Ecuadorian highlands. We designed and developed a set of 30 species-specific SSR (simple sequence repeats) markers and used 16 of these to characterize 100 mortiño individuals from 27 collection sites. Our results revealed a high degree of genetic diversity (HE = 0.73) for the Ecuadorian mortiño, and a population structure analyses suggested the existence of distinct genetic clusters present in the northern, central and southern highlands. A fourth, clearly differentiated cluster was also found and included individuals from locations at higher elevations. We suggest that the population structure of the species could be explained by an isolation-by-distance model and can be associated with the geological history of the Andean region. Our results suggest that elevation could also be a key factor in the differentiation of mortiño populations. This study provides an extensive overview of the species across its distribution range in Ecuador, contributing to a better understanding of its conservation status. These results can assist in the development of conservation programs for this valuable biological and cultural resource and for the páramo ecosystem as a whole.


Asunto(s)
Arándanos Azules (Planta)/genética , Ecosistema , Variación Genética , Repeticiones de Microsatélite/genética , Arándanos Azules (Planta)/crecimiento & desarrollo , Ecuador , Frutas/genética , Frutas/crecimiento & desarrollo , Humanos , Especificidad de la Especie
13.
PLoS One ; 15(7): e0236334, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32730346

RESUMEN

In order to increase the stability of fresh agricultural product supply chain, farmers and enterprises need to evolve into a symbiotic system of supply chain. At the present stage, symbiotic relations and evolutionary trends in a symbiotic system for fresh agricultural product supply chains lack quantitative methods for determining symbiotic criteria. In the sense of quantification -oriented criteria, symbiotic systems for fresh agricultural product supply chains are defined, and an improved stationary state analysis method is proposed. Three key steps in this method are quantifying a symbiotic energy model with an evaluation model of ecological carrying capacity, setting up a system evolution model based on the logistic growth function, and verifying the symbiotic system's singularity and phase transition boundary by Lyapunov indirect method. MATLAB numerical simulation shows that types of singularity and the phase transition boundary of symbiotic system are divided effectively. And in both conditions, infinite exponential growth and convergence to steady state, the mutualism mode is the optimal choice for the symbiotic system we defined, symbiotic relations between farmers and cooperative companies are stable and long-term at this time. Those conclusions provide a reference approach to enhance the overall prospective benefits to the fresh agricultural products supply chain.


Asunto(s)
Agricultura , Simbiosis , Agricultura/economía , Arándanos Azules (Planta)/crecimiento & desarrollo , Costos y Análisis de Costo , Agricultores , Modelos Biológicos
14.
BMC Plant Biol ; 20(1): 182, 2020 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-32334538

RESUMEN

BACKGROUND: Propagation of cuttings is frequently used in various plant species, including blueberry, which shows special root characteristics that may hinder adventitious root (AR) formation. AR formation is influenced by various factors, and auxin is considered to play a central role; however, little is known of the related regulatory mechanisms. In this study, a comparative transcriptome analysis of green cuttings treated with or without indole-butyric acid (IBA) was performed via RNA_seq to identify candidate genes associated with IBA-induced AR formation. RESULTS: Rooting phenotypes, especially the rooting rate, were significantly promoted by exogenous auxin in the IBA application. Blueberry AR formation was an auxin-induced process, during which adventitious root primordium initiation (rpi) began at 14 days after cutting (DAC), root primordium (rp) was developed at 21 DAC, mature AR was observed at 28 DAC and finally outgrowth from the stem occurred at 35 DAC. Higher IAA levels and lower ABA and zeatin contents might facilitate AR formation and development. A time series transcriptome analysis identified 14,970 differentially expressed genes (DEGs) during AR formation, of which there were 7467 upregulated and 7503 downregulated genes. Of these, approximately 35 candidate DEGs involved in the auxin-induced pathway and AR formation were further identified, including 10 auxin respective genes (ARFs and SAURs), 13 transcription factors (LOB domain-containing protein (LBDs)), 6 auxin transporters (AUX22, LAX3/5 and PIN-like 6 (PIL6s)) and 6 rooting-associated genes (root meristem growth factor 9 (RGF9), lateral root primordium 1 (LRP1s), and dormancy-associated protein homologue 3 (DRMH3)). All these identified DEGs were highly upregulated in certain stages during AR formation, indicating their potential roles in blueberry AR formation. CONCLUSIONS: The transcriptome profiling results indicated candidate genes or major regulatory factors that influence adventitious root formation in blueberry and provided a comprehensive understanding of the rooting mechanism underlying the auxin-induced AR formation from blueberry green cuttings.


Asunto(s)
Arándanos Azules (Planta)/genética , Genes de Plantas , Raíces de Plantas/genética , Arándanos Azules (Planta)/crecimiento & desarrollo , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Ácidos Indolacéticos/metabolismo , Indoles/farmacología , Fenotipo , Reguladores del Crecimiento de las Plantas/análisis , Raíces de Plantas/anatomía & histología , Raíces de Plantas/crecimiento & desarrollo , ARN de Planta , RNA-Seq , Transducción de Señal
15.
J Sci Food Agric ; 100(9): 3675-3686, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32240546

RESUMEN

BACKGROUND: Cultivation of highbush blueberry (Vaccinium corymbosum L.) has been increasing in Europe in recent years, in particular due to the availability of new genotypes suitable for cultivation in many different environmental conditions. The aim of this study was to evaluate the resilience and nutritional quality of 11 highbush blueberry cultivars and two new selections (from the New Zealand Institute for Plant and Food Research Ltd breeding program) in Mediterranean hot summer climate conditions by measuring plant yield, seasonality, fruit sensorial traits, and phytochemical content in the fruits. RESULTS: The new blueberry genotype PFR005 showed a high level of adaptability to these environmental conditions, with the highest total plant yield, whereas PFR075 was the best genotype for nutritional characteristics. Among the cultivars, 'Cosmopolitan' showed the maximum average fruit weight, 'Blueray' and 'Hortblue Poppins' demonstrated a good sensorial profile, while the best cultivars from the nutritional point of view were 'Hortblue Poppins', 'Hortblue Petite', and 'Early Blue'. CONCLUSION: New cultivars and new genotypes able to satisfy the needs of different users, have been identified. The integration of germplasm evaluation with a tailored breeding program will help to create new cultivars that will be useful for the expansion of blueberry cultivation in hot Mediterranean summer climate conditions, which up to now have limited this crop. © 2020 Society of Chemical Industry.


Asunto(s)
Arándanos Azules (Planta)/genética , Frutas/química , Arándanos Azules (Planta)/química , Arándanos Azules (Planta)/crecimiento & desarrollo , Clima , Frutas/genética , Frutas/crecimiento & desarrollo , Genotipo , Calor , Región Mediterránea , Valor Nutritivo , Estaciones del Año
16.
PLoS One ; 15(1): e0227970, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31978125

RESUMEN

Commercial lowbush blueberry (Vaccinium angustifolium Ait.) and cranberry (Vaccinium macrocarpon Ait.) crops benefit from the presence of honey bee (Apis mellifera L.) for pollination. Unfortunately, beekeepers are observing negative impacts of pollination services on honey bee colonies. In this study, we investigated three beekeeping management strategies (MS) and measured their impact on honey bee colony health and development. Experimental groups (five colonies/MS) were: A) Control farmland honey producing MS (control MS); B) Blueberry pollination MS (blueberry MS); C) Cranberry pollination MS (cranberry MS) and D) Double pollination MS, blueberry followed by cranberry (double MS). Our goals were to 1) compare floral abundance and attractiveness of foraging areas to honey bees between apiaries using a Geographic Information System, and 2) compare honey bee colony health status and population development between MS during a complete beekeeping season. Our results show significantly lower floral abundance and honey bee attractiveness of foraging areas during cranberry pollination compared to the other environments. The blueberry pollination site seemed to significantly reduce brood population in the colonies who provided those services (blueberry MS and double MS). The cranberry pollination site seemed to significantly reduce colony weight gain (cranberry MS and double MS) and induce a significantly higher winter mortality rate (cranberry MS). We also measured significantly higher levels of Black queen cell virus and Sacbrood virus in the MS providing cranberry pollination (cranberry MS and double MS).


Asunto(s)
Abejas/fisiología , Arándanos Azules (Planta)/química , Polinización/fisiología , Vaccinium macrocarpon/química , Agricultura , Animales , Apicultura/normas , Abejas/virología , Arándanos Azules (Planta)/crecimiento & desarrollo , Dicistroviridae/patogenicidad , Flores/química , Flores/crecimiento & desarrollo , Frutas/química , Frutas/crecimiento & desarrollo , Humanos , Virus ARN/patogenicidad , Vaccinium macrocarpon/crecimiento & desarrollo
17.
Chemosphere ; 241: 125091, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31683442

RESUMEN

Soil columns were collected from a blueberry field, and insecticide solutions were allowed to leach through these columns. Insecticides from four different chemical classes were applied at two different rates: the concentration at which the insecticides wash off blueberries under rainfall conditions and the labeled field rate at which they are sprayed. The soil columns were divided into thirds; top, middle and bottom. Soil bioassays using Eisenia foetida Savigny, as an indicator species, were set up to determine the toxicity of the insecticides at a top, middle and bottom layer of the soil column. The mass of E. foetida was also measured after the bioassay experiment was completed. The concentrations at which insecticides wash-off of blueberries from rainfall were not lethal to E. foetida. In order to support mortality data, insecticide residues were quantified in the soil layers for each insecticide. Under field rate leaching conditions, carbaryl showed the high levels of toxicity in the top and middle layers of soil suggesting that it has the highest risk to organisms from leaching. This study will help blueberry growers make informed decisions about insecticide use, which can help minimize contamination of the environment.


Asunto(s)
Arándanos Azules (Planta)/crecimiento & desarrollo , Insecticidas/análisis , Insecticidas/toxicidad , Oligoquetos/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Animales , Carbaril/análisis , Carbaril/toxicidad , Productos Agrícolas/crecimiento & desarrollo , Ecotoxicología , Michigan , Residuos de Plaguicidas/análisis , Lluvia , Suelo/química , Contaminantes del Suelo/análisis
18.
Chemosphere ; 246: 125699, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31884234

RESUMEN

Biochar and its by-product, wood vinegar, have attracted extensive attention owing to their great potentials in improving degraded soil, which is a global concern because of the threats to soil productivity and food security. However, the effect of biochar or wood vinegar on blueberry production is unknown. Therefore, a field trial was conducted to investigate the effects of individual and co-application of biochar (BC450) and wood vinegar (WV450) derived from blended wood waste on the blueberry tree (Vaccinium corymbosum L.) growth, fruit yield, appearance, and nutritional quality as well as the soil properties and nutrient availability. Regardless of individual or co-application, all the amendments had little effect on tree growth. Although BC450 and WV450 increased the fruit yield, the differences between the amended treatments were non-significant. Both the amendments had little effect on the apparent fruit quality, but improved the nutritional quality has been improved (e.g., increased vitamin C and decreased titratable acidity). Additionally, the individual or co-application of BC450 and WV450 had little effect on soil properties (except for soil organic matter), but increased the soil nutrient availability (e.g., NH4+-N, NO3⁻-N, and Mg). The enhancement in the nutritional quality of the blueberry fruit can be mainly attributed to the increased nutrient availability. This is the first preliminary study that demonstrates that the individual or co-application of biochar and wood vinegar can be a potential strategy for reclaiming degraded soil and enhancing blueberry production.


Asunto(s)
Ácido Acético/química , Arándanos Azules (Planta)/crecimiento & desarrollo , Carbón Orgánico/química , Fertilizantes , Metanol/química , Frutas , Valor Nutritivo , Suelo
19.
PLoS One ; 14(12): e0226619, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31877179

RESUMEN

Inorganic N fertilizers are commonly used in commercial blueberry fields; however, this form of N can favor increased weed species' growth, which can ultimately reduce the benefits of fertilization. We hypothesized that chipped ramial wood (CRW) compost is an effective alternative organic fertilizer for blueberry plants when weeds are present, as ericaceous shrub species are generally more efficient in utilizing organic N than herbaceous weed species. In this study, we measured the growth, fruit yield, and foliar N response of lowbush blueberry (Vaccinium angustifolium Aiton) to an application of 45 kg N ha-1 in the form of organic (CRW) or inorganic N (ammonium sulfate) in two areas of a commercial field colonized by either poverty oat grass (Danthonia spicata (L.) Beauv.) or sweet fern (Comptonia peregrina (L.) Coult.). We also assessed the impact of the fertilization treatments on litter decomposition rates. Contrary to our hypothesis, we found no significant increase in blueberry fruit yield or growth using CRW. By contrast, inorganic N-fertilization increased fruit yield by 70%. The effect was higher in the area colonized by D. spicata (+83%) than by C. peregrina (+45%). Blueberry fruit yield was on average twice higher in the area of the field having D. spicata than C. peregrina, suggesting a stronger competition with the latter. However, the increase in D. spicata density from 0-1 to >25 plants m-2 reduced fruit production by three-fold and strongly impacted vegetative growth in both fertilized and unfertilized plots. The impact of increased C. peregrina density was comparatively much lower, especially on vegetative growth, which was much higher in the area having C. peregrina. These patterns are likely due to a lower competition for N uptake with C. peregrina as this species can derive N from the atmosphere. Interestingly, the higher fruit yield in the area colonized by D. spicata occurred even in plots where the weeds were nearly absent (density of 0-1 plant m-2), revealing the influence of unidentified variables on blueberry fruit yield. We hypothesized that this difference resulted from over-optimal foliar N concentrations in the area colonized by C. peregrina as suggested by the significantly higher foliar N concentrations and by the negative correlation between foliar N concentrations and fruit yields in this area. The possibility of an influence of C. peregrina on flowering and pollination success, as well as of unidentified local site conditions is discussed. The tested N-fertilization treatments did not affect foliar N concentrations or litter decomposition rates. Overall, our results show that ammonium sulfate is very effective at increasing fruit yields but that both fruit yields and the efficiency of the N-fertilization treatment are decreased by increased D. spicata density, especially above 25 plants m-2. Although CRW did not significantly enhance fruit yields in the short term, this fertilizer may have a long-term beneficial effect.


Asunto(s)
Agricultura/métodos , Arándanos Azules (Planta)/crecimiento & desarrollo , Fertilizantes , Frutas/crecimiento & desarrollo , Malezas/crecimiento & desarrollo , Sulfato de Amonio/análisis , Fertilizantes/análisis , Myricaceae/crecimiento & desarrollo , Nitrógeno/análisis , Poaceae/crecimiento & desarrollo
20.
FEMS Microbiol Ecol ; 95(9)2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31425589

RESUMEN

Peatland vegetation is composed mostly of mosses, graminoids and ericoid shrubs, and these have a distinct impact on peat biogeochemistry. We studied variation in soil microbial communities related to natural peatland microhabitats dominated by Sphagnum, cotton-grass and blueberry. We hypothesized that such microhabitats will be occupied by structurally and functionally different microbial communities, which will vary further during the vegetation season due to changes in temperature and photosynthetic activity of plant dominants. This was addressed using amplicon-based sequencing of prokaryotic and fungal rDNA and qPCR with respect to methane-cycling communities. Fungal communities were highly microhabitat-specific, while prokaryotic communities were additionally directed by soil pH and total N content. Seasonal alternations in microbial community composition were less important; however, they influenced the abundance of methane-cycling communities. Cotton-grass and blueberry bacterial communities contained relatively more α-Proteobacteria but less Chloroflexi, Fibrobacteres, Firmicutes, NC10, OD1 and Spirochaetes than in Sphagnum. Methanogens, syntrophic and anaerobic bacteria (i.e. Clostridiales, Bacteroidales, Opitutae, Chloroflexi and Syntrophorhabdaceae) were suppressed in blueberry indicating greater aeration that enhanced abundance of fungi (mainly Archaeorhizomycetes) and resulted in the highest fungi-to-bacteria ratio. Thus, microhabitats dominated by different vascular plants are inhabited by unique microbial communities, contributing greatly to spatial functional diversity within peatlands.


Asunto(s)
Bacterias/aislamiento & purificación , Arándanos Azules (Planta)/crecimiento & desarrollo , Hongos/aislamiento & purificación , Poaceae/crecimiento & desarrollo , Microbiología del Suelo , Sphagnopsida/crecimiento & desarrollo , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Arándanos Azules (Planta)/microbiología , Hongos/clasificación , Hongos/genética , Hongos/metabolismo , Metano/metabolismo , Microbiota , Poaceae/microbiología , Suelo/química , Sphagnopsida/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...